Molecular Pathways: Targeting MYC-induced metabolic reprogramming and oncogenic stress in cancer.

نویسندگان

  • Bo Li
  • M Celeste Simon
چکیده

MYC is a multifunctional transcription factor that is deregulated in many human cancers. MYC impacts a collaborative genetic program that orchestrates cell proliferation, metabolism, and stress responses. Although the progression of MYC-amplified tumors shows robust dependence on MYC activity, directly targeting MYC as a therapeutic method has proven to be technically difficult. Therefore, alternative approaches are currently under development with a focus on interference with MYC-mediated downstream effects. To fuel rapid cell growth, MYC reprograms cancer cell metabolism in a way that is substantially different from normal cells. The MYC-induced metabolic signature is characterized by enhanced glucose and glutamine uptake, increased lactate production, and altered amino acid metabolism. Targeting MYC-reprogrammed cancer cell metabolism is considered to be promising based on multiple preclinical studies. In addition, the increased biosynthetic demand of MYC-driven tumors coupled with limited nutrient access within tumor microenvironments create multiple levels of oncogenic stress, which can also be used as tumor-specific targets for pharmacologic intervention. Presumably, the best therapeutic strategy for treating MYC-amplified tumors is combined targeting of multiple MYC-mediated pathways, especially those involved in regulating cell proliferation, metabolism, and oncogenic stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Pathways Molecular Pathways: Targeting MYC-induced Metabolic Reprogramming and Oncogenic Stress in Cancer

MYC is amultifunctional transcription factor that is deregulated inmany human cancers. MYC impacts a collaborative genetic program that orchestrates cell proliferation, metabolism, and stress responses. Although the progression of MYC-amplified tumors shows robust dependence on MYC activity, directly targeting MYC as a therapeutic method has proven to be technically difficult. Therefore, altern...

متن کامل

AKT1 and MYC induce distinctive metabolic fingerprints in human prostate cancer.

Cancer cells may overcome growth factor dependence by deregulating oncogenic and/or tumor-suppressor pathways that affect their metabolism, or by activating metabolic pathways de novo with targeted mutations in critical metabolic enzymes. It is unknown whether human prostate tumors develop a similar metabolic response to different oncogenic drivers or a particular oncogenic event results in its...

متن کامل

Oncogenic regulation of tumor metabolic reprogramming

Development of malignancy is accompanied by a complete metabolic reprogramming closely related to the acquisition of most of cancer hallmarks. In fact, key oncogenic pathways converge to adapt the metabolism of carbohydrates, proteins, lipids and nucleic acids to the dynamic tumor microenvironment, conferring a selective advantage to cancer cells. Therefore, metabolic properties of tumor cells ...

متن کامل

Too much or too little

The global effort to understand the molecular drivers of cancer onset and progression is now coming to fruition with the identification of specific genomic and epigenomic events that influence signaling through key oncogenic pathways. Genetic studies using inducible expression of the critical growth controlling oncogenes MYC, RAS, PI3K and AKT have shown unequivocally that, in conjunction with ...

متن کامل

MicroRNAs and oncogenic transcriptional regulatory networks controlling metabolic reprogramming in cancers

Altered cellular metabolism is a fundamental adaptation of cancer during rapid proliferation as a result of growth factor overstimulation. We review different pathways involving metabolic alterations in cancers including aerobic glycolysis, pentose phosphate pathway, de novo fatty acid synthesis, and serine and glycine metabolism. Although oncoproteins, c-MYC, HIF1α and p53 are the major driver...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical cancer research : an official journal of the American Association for Cancer Research

دوره 19 21  شماره 

صفحات  -

تاریخ انتشار 2013